
Snowflake vs Google BigQuery:
A Comprehensive Guide
Understanding the key differences and how to migrate from
Snowflake to BigQuery

Page 02

Table of Contents

1 Executive summary

 Choosing Onix as your trusted cloud migration partner

03

04

2 Evaluating the importance of data migration and modernization

 Query performance

 Data security

05

05

05

3 Areas to consider when migrating from Snowflake to BigQuery

 Snowflake & BigQuery – Architecture

 Snowflake & BigQuery – Object hierarchy and mapping

 Snowflake & BigQuery – Data types

07

07

08

08

4 How to migrate from Snowflake to BigQuery

 Data migration challenges & considerations

 Data testing and validation

10

11

11

5 Conclusion 12

Page 03

Executive summary

In 2025 and beyond, more enterprises are
adopting digital transformation in a bid to gain
more market competitiveness and innovation. In
this context, data modernization is a “core”
business necessity - and not just another “to-do”
process.

The recent numbers in data modernization look
encouraging:

• 52% of companies have migrated their IT
infrastructure to the cloud.

• 57% of technology decision-makers are
accelerating their cloud migration.

• The public cloud market is projected to grow to
$825 billion in 2025.

With the growing demand for data-driven
decision-making, industry leaders are recognizing
the need to integrate data management. By
streamlining data integration with AI and data
warehousing, modern data management platforms
are creating the foundation for their modernization
strategy.

Among the latest trends in data modernization,
enterprises are choosing operational data
warehouses, which provide them real-time data
access for faster decision-making. As compared
to “traditional” warehouses, operational
warehouses can handle massive data volumes and
high-speed data processing.

Cloud-based operational warehouses like Google
BigQuery offer a host of business benefits
including:

1. Scalability

With Google BigQuery, enterprises in their
modernization efforts can overcome
scalability-related limitations - with its cloud
infrastructure that automatically scales according
to growth in data volumes.

2. Centralized data storage

Enterprises can also centralize and consolidate
their data on BigQuery’s unified environment, thus
making it easier to perform data analytics and
develop AI models.

3. Integration with other Google Cloud services

Google BigQuery is also part of the Google Cloud
ecosystem and provides built-in integration with:

• Google Cloud AI and machine learning tools

• Google Data Studio for data visualization

• Google Cloud Functions for serverless
computing

• Google Cloud Pub/Sub for real-time data
streaming

4. Data security

BigQuery also elevates data security and
governance with its robust security framework
comprising the following features:

• Data encryption (during storage and in transit)

• Customer-managed encryption keys

• Finely-tuned access control

• Cloud-powered data loss prevention (DLP)

https://foundryco.com/tools-for-marketers/research-cloud-computing/
https://foundryco.com/tools-for-marketers/research-cloud-computing/
https://www.statista.com/statistics/1313892/end-user-spending-forecast-of-public-it-cloud-services-worldwide/#:~:text=The%20public%20cloud%20market%20saw,services%20being%20the%20largest%20segment.

Page 04

Choosing Onix as your trusted cloud migration partner

When it comes to large-scale migration projects,
Onix has a successful track record and expertise
in cloud migration and modernization. Here’s a
case study of how Onix enabled a national retailer

to migrate their Snowflake and MS Azure workloads
to Google Cloud and BigQuery for real-time
analytics.

https://www.onixnet.com/solutions/cloud-migration-and-modernization/
https://www.onixnet.com/case-study/national-retailer-migrates-snowflake-azure-workloads-to-gcp-for-real-time-access-to-analytics/

Page 05

Evaluating the importance of
data migration and modernization

Cloud platforms like Snowflake and Google
BigQuery both offer a reliable platform for data
migration and modernization. With these cloud
platforms, organizations can avail benefits in the
form of improved scalability, lower costs, and
better performance.

By separating data storage from their computing
resources, Snowflake and BigQuery are built for
scalability. With its centralized data storage,
Snowflake can store data from external platforms
like Google Cloud and MS Azure. On the other
hand, Google BigQuery features a serverless
architecture, which can automatically scale its
resources depending on its computing demands.
Here are some other critical aspects of both
Snowflake and BigQuery that matter for data
modernization:

Query performance

For improved performance, enterprises need to
optimize their query processing speed, which can
lead to faster decision-making. Snowflake
provides optimum performance by running
multiple workloads at the same time - while
keeping them isolated from each other.

On the other hand, Google BigQuery has an in-built
caching mechanism, which reduces the querying
time. Additionally, its serverless architecture can
allocate more computing resources during peak
querying demands.

Data security

On the cloud, data security is of paramount
importance to any enterprise implementing cloud
modernization. Both Snowflake and BigQuery (BG)
offer strong data encryption in compliance with
AES-256 standard. On its virtual private version,
Snowflake limits the number of subscribers to
virtual private networks (VPNs) to ensure network
security.

With Google BigQuery, enterprises can implement
comprehensive data governance for managing
data security and ensuring that data access is
aligned with the organization’s data policies and
regulations. BigQuery implements data
governance through the following 3 categories:

1. Access control

BigQuery provides access control with the
following features:

• Identity and access management (IAM) defines
access control to valuable BigQuery resources
like projects, datasets, and database tables.

• Column-level (and row-level) access control
restricts user access to specific table columns
and rows respectively, based on the user’s
attributes or data values.

• Data transfer management enables the
creation of sensitive perimeters around Google
Cloud’s resources, which can define the access
control to these resources.

Page 06

2. Data stewardship

Data stewardship can protect sensitive data
through proven techniques like data masking and
encrypting during data querying or transit. For
instance, BigQuery can encrypt all stationary and
in-transit data.

3. Data quality

With data quality management, BigQuery ensures
that the data is accurate, complete, and
consistent. Using data lineage, BigQuery can
provide insights into the data source and how it has
changed over time.

Besides, BigQuery’s serverless architecture
decouples its data storage from computing, thus
empowering enterprises to have more control over
their data. This decoupled framework enables
BigQuery users to scale their computing resources
whenever required.

In addition to BigQuery’s data governance and
security, it can seamlessly manage common
data-related challenges through:

• Faster data ingestion and transfer from SaaS
applications like Google Ads and data
warehouses like Teradata.

• Support for real-time data analytics by running
analytical queries on massive datasets (ranging
from terabytes to petabytes) in a few seconds
or minutes.

As an integral part of the Google Cloud Platform
(GCP) environment, BigQuery is deeply integrated
with GCP’s data processing and analytics
capabilities. This enables customers to implement
a modern data warehouse on the cloud. Depending
on the stage of the data lifecycle, GCP delivers a
variety of data-related services, including:

• Data ingestion

▪ Google Kubernetes Engine (GKE)

▪ Compute Engine

▪ Google Cloud Pub/Sub messaging

• Data storage on the cloud

▪ BigQuery

▪ Cloud SQL

• Data processing and analysis

▪ Dataflow

▪ BigQuery

▪ Dataproc

• Data exploration and visualization

▪ Looker

▪ BigQuery BI Engine

▪ Datalab

Next, let’s understand how the structural
differences of these 2 platforms pose a challenge
in Snowflake to BigQuery migration.

Page 07

Areas to consider when migrating
from Snowflake to BigQuery

Enterprises using Snowflake must understand the
challenges of migrating this data warehouse to
BigQuery – and how to address each of these
challenges. This section highlights the differences
in the following technical areas:

• Architecture

• Object mapping

• Data types

Snowflake & BigQuery –
Architecture

While both Snowflake and BigQuery are essentially
data warehouses, their architectures do have some
key differences.

The Snowflake architecture is a hybrid combination
of the following database architectures:

• Shared disk architecture manages the
database queries with dedicated computing
clusters.

• Shared-nothing architecture manages the data
using a separate cloud object storage service.

In Snowflake, each cluster in the network manages
the cached portion of the dataset to improve query
performance. On the other hand, Google
BigQuery’s architecture does not use a traditional
node-based cloud warehouse system – or an
on-premises massively parallel processing (MPP)
system. It completely decouples data storage
from its computing resources.

With its decoupled architecture, BigQuery can
dedicate more computing power to database
queries, thus enabling faster processing. Overall,
BigQuery is powered by many data centers with
massive storage capacity and networking
bandwidth, which can meet the requirements of
concurrent users.

Cloud
services

Authentication & Access Control

Infrastructure
manager Optimizer Metadata

manager Security

Query
processing

Virtual
warehouse

Virtual
warehouse

Virtual
warehouse

Database
storage

VPC

Source

https://docs.snowflake.com/en/_images/architecture-overview.png

Page 08

Snowflake & BigQuery – Object
hierarchy and mapping

Snowflake and BigQuery use the same hierarchical
object structure but with different names. With
Snowflake, the top of the object hierarchy is
referred to as “database,” while BigQuery refers to
it as a “project.”

Here's how each of these data warehouses terms
their object hierarchical structure:

• Snowflake -
<database>/<schema>/<tables/views>

• BigQuery -
<project>/<dataset>/<tables/views>

The following tables list the entire object hierarchy
and mapping in Snowflake and BigQuery:

Snowflake & BigQuery – Data
types

Snowflake and BigQuery have equivalent data
types that serve the same purpose. However, some
data type mismatches need to be considered for a
smoother migration:

1. BigQuery supports NUMERIC and BIG
NUMERIC data types, which are not compatible
with the NUMBER/ NUMERIC data type in
Snowflake.

2. BigQuery’s BIG NUMERIC data type has a
precision count of 76.76 and a scale of 38. In
Snowflake, the NUMBER data type has
precision count of 38 digits and 37 digits of
scale (which can be more than 0.)

3. Snowflake defines the FLOAT data type as “NaN
> X” - where X is any FLOAT value apart from
NaN. Alternatively, Google BigQuery defines
the FLOAT data type as “NaN < X” - where X is
any FLOAT value apart from NaN.

4. In Snowflake, the DOUBLE data type is
synonymous with the FLOAT data type - but is
incorrectly displayed as FLOAT. Instead, it must
be represented as DOUBLE.

5. The VARCHAR data type in Snowflake has a
maximum data length of 16MB, which is the
default length (unless otherwise specified). In
BigQuery, the corresponding data type is
STRING - with a variable length of UTF-8
encoded Unicode. It has a maximum length of
16,000 characters.

Replicated, Distributed Storage
(99.9999999999 % durability)

High-Available Cluster Compute
(Dremel)

Petabit Network

BigQuery

Distributed Memory
Shuffle Tier

Streaming
Ingest

SQL: 2011
Compliant

Rest API

Web UI, CLI

Client Libraries in
7 languages

Free Bulk
Loading

Source

• Database

• Schema

• Session-based temporary
table

• Secure views

• Virtual warehouse

• Micro-partitioning

• Materialized view

• Clustering

• Primary keys – not
enforced in standard
tables

• Project

• Dataset

• Anonymous or temporary
table

• Authorized views

• Reservation

• Partitioning

• Materialized view

• Clustering

• Primary keys – not
enforced

Snowflake BigQuery

https://storage.googleapis.com/gweb-cloudblog-publish/images/BQ_Explained_2.max-900x900.jpg
https://cloud.google.com/bigquery/docs/migration/snowflake-sql#data-types
https://cloud.google.com/bigquery/docs/migration/snowflake-sql#data-types

Snowflake & BigQuery – Data
types

Snowflake and BigQuery have equivalent data
types that serve the same purpose. However, some
data type mismatches need to be considered for a
smoother migration:

1. BigQuery supports NUMERIC and BIG
NUMERIC data types, which are not compatible
with the NUMBER/ NUMERIC data type in
Snowflake.

2. BigQuery’s BIG NUMERIC data type has a
precision count of 76.76 and a scale of 38. In
Snowflake, the NUMBER data type has
precision count of 38 digits and 37 digits of
scale (which can be more than 0.)

3. Snowflake defines the FLOAT data type as “NaN
> X” - where X is any FLOAT value apart from
NaN. Alternatively, Google BigQuery defines
the FLOAT data type as “NaN < X” - where X is
any FLOAT value apart from NaN.

4. In Snowflake, the DOUBLE data type is
synonymous with the FLOAT data type - but is
incorrectly displayed as FLOAT. Instead, it must
be represented as DOUBLE.

5. The VARCHAR data type in Snowflake has a
maximum data length of 16MB, which is the
default length (unless otherwise specified). In
BigQuery, the corresponding data type is
STRING - with a variable length of UTF-8
encoded Unicode. It has a maximum length of
16,000 characters.

Page 09

1. The CHAR data type in Snowflake has a
maximum length of 1.

2. BigQuery does not have an equivalent data
type of VARIANT in Snowflake.

3. The BOOL data type in BigQuery can accept
values of TRUE and FALSE. The corresponding
BOOL data type in Snowflake can accept
values of TRUE, FALSE, and NULL.

4. The DATE data type in Snowflake accepts most
common date formats. The DATE type in
BigQuery only accepts dates in the
'YYYY-[M]M-[D]D' format.

5. The TIME data type in Snowflake supports up to
9 nanoseconds of precision, whereas the TIME
data type in BigQuery supports up to 6
nanoseconds of precision.

6. The TIMESTAMP_LTZ data type in Snowflake
defines local-time-zone along with the date

and time. Besides, this data type can define
multiple-time-zone along with the date and
time. This means that a single TIMESTAMP_TZ
column can hold timestamp values with
different time zones. Alternatively, BigQuery
doesn’t have a datatype that supports a
non-utc timezone.

7. The OBJECT data type in Snowflake does not
support explicitly-typed values. Values are of
the VARIANT type.

8. Snowflake supports the XML data format with
VARIANT data types. BigQuery does not have
any equivalent data type.

9. Google BigQuery has the "DATETIME" and
"GEOGRAPHY" data types – with no equivalent
type in Snowflake

Here’s how BigQuery users can overcome these
technical challenges:

SolutionProblem

Mismatch between the NUMERIC/ NUMBER
data type in Snowflake and the NUMERIC data
type in BigQuery

In BigQuery, use BIG NUMERIC as the equivalent data
type if the precision and scale don't align with that of
Snowflake.

For the Snowflake’s NUMERIC columns (without any
specified precision and scale), use BIG NUMERIC as the
default type in BigQuery - or scan the column data for
the maximum length.

No equivalent of Snowflake’s VARIANT data
type

If the VARIANT uses a single data type, define the data
types in BigQuery as JSON, STRING, or INT (or
NUMERIC).

If the VARIANT uses multiple data types, define the data
type in BigQuery as STRING.

No equivalent of Snowflake’s VARIANT data
type with XMLs.

BigQuery does not support XML data type. For every
“Variant XML” column in Snowflake, create a “STRING”
column in BigQuery with XML data and an equivalent
JSON data type.

Next, let’s understand the best strategy to migrate the Snowflake data warehouse to Google BigQuery.

Page 10

How to migrate from
Snowflake to BigQuery

Enterprises can migrate incremental data from
Snowflake to BigQuery by using the “ETL pipeline
conversion to BigQuery” tool (or equivalent).
However, for a comprehensive migration,
enterprises must also migrate historical data
accumulated in the ETL pipelines of the existing
system. This can be performed using any of the
following methods:

1. Unloading data into the Google cloud storage.
If you have a Google cloud account, you can
use the “COPY INTO GCS" to copy data from
the Snowflake database table to Google's
cloud storage (GCS) bucket.

2. Using the Snowflake JDBC driver.
With this method, you can pull Snowflake data

into GCP-enabled systems like virtual
machines and Dataflow.

3. Using Apache Sqoop.
This method essentially pulls Snowflake data
from Dataflow or any Hadoop installations.

Among these methods, the "COPY INTO GCS"
method is the fastest and most efficient mode of
extracting historical data from Snowflake into GCS.
Additionally, you can automate the process of
migrating historical backfills from Snowflake to
BigQuery with a data migration framework. Here’s
an example:

Partner
Interconnect

Cloud
Storage

BigQuery

Compute
Engine

Cloud
Interconnect

OR

Pre-Req

1

2b

2a 3*

3

https://docs.snowflake.com/en/user-guide/data-unload-gcs

Page 11

Here are the necessary steps:

1. Running in the Compute Engine, the automated
framework initiates the “Copy into GCS”
command for the selected data from the
database table.

2. The command copies the selected data into
the GCS location – and sends an
acknowledgment back to the migration
framework.

3. Next, the framework pushes the data to
BigQuery – and performs the data cleanup in
GCS after successfully copying the data to the
table.

Data migration challenges &
considerations

Here are some challenges – and solutions to
consider - during data migration from Snowflake to
BigQuery:

1. Challenge#1 –
Maintaining referential integrity between
master and child tables – when the child table is
migrated after the master table is already
migrated and live on the target warehouse.

Why does this happen? Parent-child tables with
surrogate keys (which are system-generated
keys) can pose a challenge during migration.
This is because the surrogate key is not directly
mapped to the source keys – thus breaking
down the parent-child table relationship.

Here’s the solution:

▪ Extract the natural keys from the Snowflake
master table along with the child table data.

▪ Load these keys in a temporary BigQuery
database table.

▪ Update the surrogate keys in the child
table.

2. Challenge#2 –
While loading large datasets into BigQuery ,

some database queries may exceed the
6−hour execution limit, thus leading to load
failures and incomplete data migrations.
Why does this happen? The 6−hour query
execution limit is applicable only to individual
queries – including those used for data loading
and transformation. Data loading and
processing are both time and
resource-intensive for exceptionally massive
tables and high-volume data sources.

Here’s the solution:

Divide the data extraction into smaller chunks
of data before loading it in BigQuery. Load
segmentation can also help in completing data
loading within the permitted time

Data testing and validation

In addition to migration challenges, enterprises can
face challenges in data accuracy and referential
integrity. Here are some of the reasons for this:

1. Multi-row updates
By using UPDATE/ MERGE commands,
BigQuery can match one source row for each
target row. Snowflake supports
non-deterministic updates that can perform
multi-row updates.

2. Un-nesting approach for JSON
This is applicable for JSON feeds during
un-nesting in BigQuery. Snowflake can un-nest
JSON columns internally by converting them
into a JSON array. This is not possible in
BigQuery.

3. Implicit String to Boolean casting
Snowflake does not support the implicit
casting of a String variable to Boolean.
BigQuery only supports Integer and String (with
value "true") to be cast to Boolean.

4. Concurrent transactions
Concurrent transactions fail in BigQuery, while
Snowflake adds them to a queue (with a lock).

5. Time travel
Snowflake provides access to historical data at
any point within a specified period (from 0 to
90 days). BigQuery uses time travel to access
data within the previous 7 days. For historical
data beyond 7 days, BigQuery supports
exporting regularly scheduled snapshots.

Post-migration, enterprises can check for data
fidelity with the right testing framework and
validation tool. As an automated data validation
tool, Onix's Pelican is recommended to perform
this task.

Conclusion
Despite all the workarounds, it’s challenging for
enterprises to migrate from Snowflake to BigQuery
without the support of a cloud migration partner.
Here are some additional feature gaps in
Snowflake and BigQuery that can delay the
migration process:

1. BigQuery does not support “change data
capture” (CDC) for its database tables using a
stream object.
Onix’s solution: Develop a custom framework
to fetch the incremental data. This can later be
replaced with the “Time series functions” when
it’s made available.

2. For capturing table streams for continuous ELT
workflows, Snowflake users can rely on

orchestration and scheduling. BigQuery does
not support any function for continuous
workflows. Onix’s solution: Use Airflow for
scheduling and orchestration – or opt for
continuous queries.

3. For stored procedures, Snowflake supports
programming languages like Java, Python, and
Javascript. BigQuery mainly supports SQL and
PySpark.
Onix’s solution: Stored procedures in
Snowflake (without SQL code) need to be
rewritten to SQL code in BigQuery.

4. Snowflake supports XML handling for loading
and querying database tables, while BigQuery
does not support XML as a data type – nor
provide any way to query XML data in its
database tables.
Onix’s solution: Convert XML to JSON by:

▪ Converting in-flight data using Dataflow or
any computing tool.

▪ Converting data (post ingestion) by using
UDFs.

As an award-winning Google Cloud partner, Onix
can address your specific migration-related
challenges and minimize business disruption during
this transition.

With our expertise, you can streamline your cloud
migration to Google Cloud and BigQuery. Book a
free product demo with our cloud migration
experts.

Here are the necessary steps:

1. Running in the Compute Engine, the automated
framework initiates the “Copy into GCS”
command for the selected data from the
database table.

2. The command copies the selected data into
the GCS location – and sends an
acknowledgment back to the migration
framework.

3. Next, the framework pushes the data to
BigQuery – and performs the data cleanup in
GCS after successfully copying the data to the
table.

Data migration challenges &
considerations

Here are some challenges – and solutions to
consider - during data migration from Snowflake to
BigQuery:

1. Challenge#1 –
Maintaining referential integrity between
master and child tables – when the child table is
migrated after the master table is already
migrated and live on the target warehouse.

Why does this happen? Parent-child tables with
surrogate keys (which are system-generated
keys) can pose a challenge during migration.
This is because the surrogate key is not directly
mapped to the source keys – thus breaking
down the parent-child table relationship.

Here’s the solution:

▪ Extract the natural keys from the Snowflake
master table along with the child table data.

▪ Load these keys in a temporary BigQuery
database table.

▪ Update the surrogate keys in the child
table.

2. Challenge#2 –
While loading large datasets into BigQuery ,

some database queries may exceed the
6−hour execution limit, thus leading to load
failures and incomplete data migrations.
Why does this happen? The 6−hour query
execution limit is applicable only to individual
queries – including those used for data loading
and transformation. Data loading and
processing are both time and
resource-intensive for exceptionally massive
tables and high-volume data sources.

Here’s the solution:

Divide the data extraction into smaller chunks
of data before loading it in BigQuery. Load
segmentation can also help in completing data
loading within the permitted time

Data testing and validation

In addition to migration challenges, enterprises can
face challenges in data accuracy and referential
integrity. Here are some of the reasons for this:

1. Multi-row updates
By using UPDATE/ MERGE commands,
BigQuery can match one source row for each
target row. Snowflake supports
non-deterministic updates that can perform
multi-row updates.

2. Un-nesting approach for JSON
This is applicable for JSON feeds during
un-nesting in BigQuery. Snowflake can un-nest
JSON columns internally by converting them
into a JSON array. This is not possible in
BigQuery.

3. Implicit String to Boolean casting
Snowflake does not support the implicit
casting of a String variable to Boolean.
BigQuery only supports Integer and String (with
value "true") to be cast to Boolean.

4. Concurrent transactions
Concurrent transactions fail in BigQuery, while
Snowflake adds them to a queue (with a lock).

Get in touch
onixnet.com

connect@onixnet.com

800.664.9638

Follow us:

Copyright © 2024 Onix . All Rights Reserved.

Page 12

5. Time travel
Snowflake provides access to historical data at
any point within a specified period (from 0 to
90 days). BigQuery uses time travel to access
data within the previous 7 days. For historical
data beyond 7 days, BigQuery supports
exporting regularly scheduled snapshots.

Post-migration, enterprises can check for data
fidelity with the right testing framework and
validation tool. As an automated data validation
tool, Onix's Pelican is recommended to perform
this task.

Conclusion
Despite all the workarounds, it’s challenging for
enterprises to migrate from Snowflake to BigQuery
without the support of a cloud migration partner.
Here are some additional feature gaps in
Snowflake and BigQuery that can delay the
migration process:

1. BigQuery does not support “change data
capture” (CDC) for its database tables using a
stream object.
Onix’s solution: Develop a custom framework
to fetch the incremental data. This can later be
replaced with the “Time series functions” when
it’s made available.

2. For capturing table streams for continuous ELT
workflows, Snowflake users can rely on

orchestration and scheduling. BigQuery does
not support any function for continuous
workflows. Onix’s solution: Use Airflow for
scheduling and orchestration – or opt for
continuous queries.

3. For stored procedures, Snowflake supports
programming languages like Java, Python, and
Javascript. BigQuery mainly supports SQL and
PySpark.
Onix’s solution: Stored procedures in
Snowflake (without SQL code) need to be
rewritten to SQL code in BigQuery.

4. Snowflake supports XML handling for loading
and querying database tables, while BigQuery
does not support XML as a data type – nor
provide any way to query XML data in its
database tables.
Onix’s solution: Convert XML to JSON by:

▪ Converting in-flight data using Dataflow or
any computing tool.

▪ Converting data (post ingestion) by using
UDFs.

As an award-winning Google Cloud partner, Onix
can address your specific migration-related
challenges and minimize business disruption during
this transition.

With our expertise, you can streamline your cloud
migration to Google Cloud and BigQuery. Book a
free product demo with our cloud migration
experts.

https://cloud.google.com/bigquery/docs/continuous-queries-introduction
https://cloud.google.com/bigquery/docs/reference/standard-sql/time-series-functions#changes
https://www.onixnet.com/contact/
https://www.onixnet.com/
connect@onixnet.com
https://www.linkedin.com/company/onixcloud?trk=public_profile_topcard-current-company
https://www.facebook.com/onixcloud/
https://x.com/OnixCloud
https://www.youtube.com/@onixcloudservices

