
Google Cloud Healthcare
API Benchmarking
Experiment and Observation Report

Scott Cruze

Executive Sponsor

scott.cruze@onixnet.com

Yasir Drabu, PhD

Principal Advisor

yasir@onixnet.us

Utkarsh Saxena

Project Lead

utkarsh.saxena@onixnet.us

Matthew Bolden

Content Strategist

matthew.bolden@onixnet.com

Onix Primary Points of Contact

Table of Contents

Page 2

Executive Summary 3

Experimental Definition 4

Experiment Execution 6

Prerequisites 6

Google Cloud Platform (GCP) Accounts 6

Experiment Results: Overview 9

Summary 9

Experiment Results: Individual APIs 11

FHIR.Create 11

FHIR.Read 12

FHIR.Delete 13

FHIR.Search 14

FHIR.ExecuteBundle 15

FHIR.ConditionalUpdate 16

FHIR.ConditionalPatch 17

FHIR.ConditionalDelete 18

FHIR.Import 19

Conclusion 20

Appendix A — Synthea 21

Overview 21

Generating Synthetic Patient Datasets 23

Synthetic Patient Data Sets 23

Appendix B — Test Harness 24

Appendix C — Experimental Considerations 25

Executive Summary

In April of 2020, Google Cloud released its Cloud Healthcare API to the general public as a serverless highly

scalable Platform-as-a-Service (PAAS) product to help solve healthcare data interoperability challenges. The

Cloud Healthcare API—which is designed to help researchers, developers and data scientists make use of often

siloed and disconnected healthcare data—utilizes the most common healthcare data formats, including FHIR,

HL7v2 and DICOM. It enables secure and compliant use of healthcare data that is often trapped in disparate

health IT systems. Once data is in Google Cloud Platform (GCP), health and life science organizations can

seamlessly use that data in analytics (such as ML and AI) and customer applications.

In order to benchmark the Cloud Healthcare API, Google chose Onix (the authors of this paper) to independently design
and execute an experiment and document the results. The goal of the experiment was to test the performance and
scalability of the Google Cloud Healthcare API at the kind of data volume that a large provider system or health plan
might experience. It was decided that 50 million patients/members was a good representative number.

To execute the experiment, it was necessary to first generate 50 million synthetic patient records with 26 billion FHIR
resources. We progressively loaded this synthetic patient data — totaling about 60TB — into a single Google FHIR store
observing the response time of eight FHIR APIs (defined in Table 2) as the amount data increased. We chose the eight
FHIR APIs as a representative sample of “typical” calls that an application interacting with FHIR data would make.

Throughput

We found that the Cloud Healthcare API and GCP will perform and scale to support very high-volume use cases, as we
were able to import 50 million synthetic patient records (~26 billion FHIR resources) into the FHIR store without any
optimization for GCP. The FHIR store compressed and stored the raw data effectively, as the final storage size (including
space required for indexing) was ~85 TB. Note that we used the default configuration for GCP, without optimization to
more accurately mimic the most common way that GCP users will consume its PaaS capabilities. We were able to import
~1 million patient records per day in this default configuration, with quota limitations. We estimate that by increasing
the import quota the import speed would increase by 100–200%.

Performance at Scale

The findings of this experiment show that the Cloud Healthcare API scales in a generally linear way. As the volume of
data under management increased, the API’s functions remain performant. This conclusion is supported by the
performance of the FHIR.Create API (which serves a “write” function); it demonstrated a response time of < 200
milliseconds per FHIR resource, even at a volume of 50 million patients. The FHIR.Read API proved similarly
performant, with a response time of < 140 milliseconds per FHIR resource at 50 million patients.

The FHIR.Search API did experience performance degradation at scale (starting at around two million patients, 1B FHIR
resources) in our initial, unoptimized test. Noting this degradation, we reran the test at a volume of 50 million patients
against a later version of the Google FHIR API. This resulted in a 381% speed improvement. It is reasonable to conclude
that a similar level of improvement would project backward through the test.

With these findings in mind, we can conclude that the Google Cloud Healthcare API is highly scalable and performant in
high-volume use cases.

Page 3

https://cloud.google.com/healthcare-api/

Experimental Definition

The experimental process that we executed to benchmark performance of the eight selected

FHIR APIs involved the following five steps.

First we generated synthetic patient records from modeled US census data using the

Synthea™ tool, developed by MITRE. Leveraging Synthea, we created one patient record file

per patient in FHIR STU3 format. The Synthea™ tool and its usage is detailed in Appendix A.

An average patient record file contains ~546 FHIR resources.

Page 4

1

We created patient records (and their respective FHIR resources) in batches to load the

Google Cloud Platform (GCP) FHIR store based on predefined measurement points as

defined in Table 1. The patient data generated from Synthea was stored in a Cloud Storage

bucket with a folder (e.g /Load Profile1/Step1) for each specific load point step.

The generated data was imported into the store using the fhirStore.Import API.

2

At each measurement point, we called each of the APIs with a predefined testing script.

We called this predefined testing script the “test harness” and have detailed it in Appendix B.

The test harness called each API 1,000 times at each step to account for network latency and

other system variances. We logged the start and end time of each API call with the

measurement point, number of patient records, and the FHIR resource count. In the case of

asynchronous calls, we recorded the final call back confirming the operation has completed.

The findings and graphs in this whitepaper describe averages taken from these 1,000 calls.

3

The final reading for each step, which

was an average of the 1,000 calls at

each step, was recorded in BigQuery

for visualization and analysis.

4

The response time was recorded on a

per patient record and per FHIR

resource (within a patient record) level.

5

We divided the measurement points into four load profiles: LP1 to LP4. Each load profile

had the same step size within that particular group (for example, 10K in LP1). Each ensuing

group had a larger step size (in terms of patient records) than the previous group.

Page 5

Load Profile Load Size Step Size Description

LP1 10K – 100K 10K patients Add patients in step sizes of 10,000 and measure at each step

LP2 100K – 1M 50K patients Add patients in step sizes of 50,000 and measure at each step

LP3 1M – 10M 500K patients Add patients in step sizes of 500,000 and measure at each step

LP4 10M – 50M 2M patients Add patients in step sizes of 2M and measure at each step

Table 1: Measurement Points

The Cloud Healthcare API REST interface consists of many different methods so it was

impractical to test them all. We selected eight API methods that are representative of the most

commonly used interactions required to support the loading and consumption of FHIR data.

Load Profile Load Size Step Size Description

fhir.create Creates a FHIR resource within a FHIR store

fhir.read Retrieves a FHIR resource from a FHIR store

fhir.conditionalDelete Deletes FHIR resources that match a search query against a FHIR store

fhir.search Retrieves FHIR resources from a FHIR store that match a search query.

fhir.conditionalUpdate Performs a search query against a FHIR store and updates the returned FHIR resource

(if found) or creates a new FHIR resource (if the search query returns no results)

fhir.conditionalPatch Performs a search query against a FHIR store and updates parts of the returned FHIR

resource (if found)

fhirStores.import Imports FHIR resources to a FHIR store by loading data from the specified sources

fhir.executeBundle Executes a (transaction) bundle of FHIR resources, each of which represents an

operation, such as create, update, or delete, on a resource in a FHIR store

Table 2: Google Cloud Healthcare API: FHIR APIs Used in the Experiment

https://cloud.google.com/healthcare/docs/reference/rest
https://cloud.google.com/healthcare/docs/reference/rest/v1beta1/projects.locations.datasets.fhirStores.fhir/create
https://cloud.google.com/healthcare/docs/reference/rest/v1beta1/projects.locations.datasets.fhirStores.fhir/read
https://cloud.google.com/healthcare/docs/reference/rest/v1beta1/projects.locations.datasets.fhirStores.fhir/conditionalDelete
https://cloud.google.com/healthcare/docs/reference/rest/v1beta1/projects.locations.datasets.fhirStores.fhir/search
https://cloud.google.com/healthcare/docs/reference/rest/v1beta1/projects.locations.datasets.fhirStores.fhir/conditionalUpdate
https://cloud.google.com/healthcare/docs/reference/rest/v1beta1/projects.locations.datasets.fhirStores.fhir/conditionalPatch
https://cloud.google.com/healthcare/docs/reference/rest/v1beta1/projects.locations.datasets.fhirStores/import
https://cloud.google.com/healthcare/docs/reference/rest/v1beta1/projects.locations.datasets.fhirStores.fhir/executeBundle

Experiment Execution
Prerequisites

Page 6

At a high level,
we needed the
following to run
the experiment:

Google Compute Engine

to run the Synthea tool

to generate the synthetic

patient data.

Google Cloud Storage to

store the output of the

Synthea files in a

persistent manner.

Compute instance to run

the load testing scripted

test cases (using Python).

Google BigQuery to

store the results of

the test.

A data visualization tool

to summarize, visualize

and host the dashboard.

GCP project to

store the generated

raw data.

GCP project with Cloud

Healthcare API enabled

to store the FHIR data.

1 2 3

4 5 6 7

Google Cloud Platform (GCP) Accounts

To run the experiment, we set up two GCP accounts:

The first account was provided by Onix for the generation of the

synthetic data into a GCP bucket. In this account, we set up:

VM/Compute

n1-standard-16 (16

vCPUs, 60 GB

memory), which was

used to install and

run Synthea and the

test harness.

Google Cloud

Storage to store

the synthetic

patient data, which

was estimated to

be 60TB.

Big Query to

store the

response times

and related

observations

The second account was provided by

Google Cloud, wherein we:

We set up the

FHIR store in

this account.

This store was not

optimized for any

specific indexes.

We used default

settings.

A B C A B

Page 7

Execution

We set up the experiment as shown in Figure 1 below.

There were 5 key execution steps as documented in Table 3, also below.

Synthea
Compute

Cloud
Storage

Load Test
Compute

FHIR
Store

BigQuery

1 2 3 4

5

Generate Storage Run Tests Healthcare API

Run Tests

Figure 1: Experiment execution architecture

Page 8

The overall experiment metrics are described below:

Step Action Description

1 Launch Compute Instances Install Synthea on multiple compute instances to generate data in parallel.

2 Create Storage Store the synthetic patent data files.

3 Run Synthea Conduct multiple runs of the n1 instance to generate data for multiple states and
store it in separate folders in the connected Cloud Storage bucket. We mapped
the Cloud Store bucket as a volume on the compute instance and generated data
in load profile volumes and steps

4 Data Import &
Execute Test Scripts

Import patient data set of incremental batches (as mentioned in Measurement
Points) to FHIR stores and measure the performance and save the results in
BigQuery with respect to the import function. This was done across different
GCP projects, so setting the right permissions was important.
Run queries as mentioned in FHIR APIs Under Consideration (Table 2).

5 Measure Performance Collect data size and response time for each endpoint under consideration into
BigQuery.

Table 3: Experiment Execution Key Steps

We ran the experiment through 50M patient records (or ~26 billion FHIR resources) for all the APIs

defined in Table 2.
1

Overall, we ran the test harness 57,000 times. Each API was called 1,000 times at each measurement point

for a total of 57 points. The 57 points in the ensuing graphs represent the average of the 1,000 calls.
2

For Load Profile-1

(10k-100k) we ran 10

experiments with

step size of 10K

patient records.

For Load Profile-2

(100k-1M) we ran 18

experiments with

step size of 50k

patient records.

For Load Profile-3

(1M-10M) we ran 9

experiments with

step size of 1M

patient records.

For Load Profile-4

(10M-50M) we ran

20 experiments with

step size of 2M

patient records.

We collected 57 average response time readings for each API for Load profiles 1, 2, 3, and 4.3

We then calculated the maximum, median, minimum and 95th percentile response times for each API.4

Page 9

Experiment Results: Overview
Summary

The measurements of the average response time for each API in terms of FHIR resources are tabulated

on page 10. The responses at each measurement point are detailed in the following sections, which are

grouped by the specific API.

Table 6 shows the throughput performance of the Import function. Table 7 shows the performance of the Execute

Bundle as compared to the Import function. These are the two primary API functions to load the FHIR store.

Key Numbers
of Interest:

The total size of the

generated source data

(JSON files on Google

Cloud Storage) for 50

million patients was 60TB

and was comprised of ~26

billion FHIR resources.

The Import operation to load the generated source data

from Google Cloud Storage into the Cloud Healthcare

FHIR API took about 50 days to complete.

We imported 50 million patient records, or about

~26 billion FHIR resources.

The Cloud Healthcare

FHIR API compressed

and stored the source

data effectively requiring

~85TB of storage,

including space required

for indexing.

The response time for all API methods remained fairly linear, with the exception of the

Search API, and well within a reasonable range.

NOTE —After completion of this testing Google released a performance improvement to

the Search API. We re-ran the now-optimized Search API with the performance

improvement on the datapoint “Load Profile 4 / 50 million patient records” and included

the result in Table 5 below.

1 2

3 4

As the data outlined and depicted below will show, the Healthcare API and the GCP FHIR store maintained performance

and scaled well across all APIs and load profiles. The first depiction of the results are provided in tabular format on page 10.

Graphical representations of the results are provided on pages 11-19.

Page 10

Results: API Latency
API Name Scope Min Median Max 95th

Create Avg. seconds per FHIR resource 0.091 0.117 0.272 0.257

Read Avg. seconds per FHIR resource 0.074 0.096 0.153 0.147

Delete Avg. seconds per FHIR resource 0.089 0.143 0.229 0.220

Conditional Update Avg. seconds per FHIR resource 0.127 0.320 0.885 0.829

Conditional Patch Avg. seconds per FHIR resource 0.128 0.233 0.458 0.436

Conditional Delete Avg. seconds per FHIR resource 0.118 0.439 0.932 0.883

Search Total search duration in seconds 0.437 2.755 10.18 9.440

Table 4: Average FHIR resource time in seconds for each API - Minimum, Median, Maximum and 95th percentile

API Name Scope Min Median Max 95th

Import FHIR resources per second 1617 5461 10547 10038

Table 6: Number of FHIR resources retrieved/reviewed per second for each API - Minimum, Median, Maximum and 95th percentile

Results: Import Throughput

API Name Scope Min Median Max 95th

Execute Bundle Avg milliseconds per FHIR resource 1.481 5.536 22.267 18.258

Import Avg milliseconds per FHIR resource 0.095 0.183 0.722 0.668

Table 7: Time taken to import each FHIR resource using the Execute Bundle and Import APIs. Importing is significantly faster.

Results: Search Retest with Latest Release of API
API Name Scope Before: Initial Release

Run (seconds)
After: Latest Release
Run (seconds)

Speed
Improvement

Search (Rerun) Average search duration in seconds 4.066 1.066 381%

Table 5: Total search duration in seconds. Search was rerun with performance optimization on the full 50 million patient record dataset.
This table shows the pre- and post-optimized figures for comparison.

Results Comparing Import Vs ExecuteBundle

Experiment Results: Individual APIs

FHIR.Create (link to documentation)

Page 11

For each measurement point, we executed the Create test harness script that created ~1,000 FHIR

resources in the FHIR store. Each data point is an average of the 1,000 Create response times.

After the resources were created and response times measured, we reset the store as the test

harness deleted the created resources.

The FHIR.Create API demonstrated impressive performance at scale. At a volume of 50 million

patients, the API showed a response time of significantly less than 200 milliseconds per FHIR

resource. The spike in response time at 36 million patients appears to be an anomaly, as overall

there is little variation.

Figure 2: CreateAPI — Average response time to Create a FHIR resource per second from LP-1 to LP-4

LP-1 LP-2 LP-3 LP-4

10
K

20
K

30
K

4
0

K

50
K

60
K

70
K

80
K

90
K

10
0

K

15
0

K

20
0

K

25
0

K

30
0

K

35
0

K

4
0

0
K

4
50

K

50
0

K

55
0

K

60
0

K

65
0

K

70
0

K

75
0

K

80
0

K

85
0

K

90
0

K

95
0

K

1M 2M 3M 4
M 5M 6M 7M 8M 9M 10
M

12
M

14
M

16
M

18
M

20
M

22
M

24
M

26
M

28
M

30
M

32
M

34
M

36
M

38
M

4
0

M

4
2M

4
4

M

4
6M

4
8M 50

M

0.150

0.200

0.250

0.100

A
verag

e D
u

ration
 p

er 10
0

9 R
esou

rces (sec.)

Maximum

Median

Minimum

https://cloud.google.com/healthcare/docs/reference/rest/v1/projects.locations.datasets.fhirStores.fhir/create

FHIR.Read (link to documentation)

Page 12

For each measurement point, we executed the Read test harness script that read ~1,000 FHIR

resources in the FHIR store. Each data point is an average of the 1,000 Read response times.

As evidenced by the graph below, the API is very responsive at scale. At 50 million patients,

FHIR.Read demonstrates a response time of < 140 milliseconds per FHIR resource.

Figure 3: Read API — Average response time to Read a FHIR resource from LP-1 to LP-4

LP-1 LP-2 LP-3 LP-4

10
K

20
K

30
K

4
0

K

50
K

60
K

70
K

80
K

90
K

10
0

K

15
0

K

20
0

K

25
0

K

30
0

K

35
0

K

4
0

0
K

4
50

K

50
0

K

55
0

K

60
0

K

65
0

K

70
0

K

75
0

K

80
0

K

85
0

K

90
0

K

95
0

K

1M 2M 3M 4
M 5M 6M 7M 8M 9M 10
M

12
M

14
M

16
M

18
M

20
M

22
M

24
M

26
M

28
M

30
M

32
M

34
M

36
M

38
M

4
0

M

4
2M

4
4

M

4
6M

4
8M 50

M

0.100

0.120

0.140

0.080

A
verag

e D
u

ration
 p

er 10
0

9 R
esou

rces (sec)

0.160

Maximum

Median

Minimum

https://cloud.google.com/healthcare/docs/reference/rest/v1/projects.locations.datasets.fhirStores.fhir/read

FHIR.Delete (link to documentation)

Page 13

For each measurement point, we executed the Delete test harness script that deleted ~1,000 FHIR

resources in the FHIR store. Each data point is an average of the 1,000 Delete response times. After

the measurements were taken, the FHIR store was reset by loading those resources back into it.

Figure 4: Delete API — Average response time to Delete a FHIR resource from LP-1 to LP-4

LP-1 LP-2 LP-3 LP-4

10
K

20
K

30
K

4
0

K

50
K

60
K

70
K

80
K

90
K

10
0

K

15
0

K

20
0

K

25
0

K

30
0

K

35
0

K

4
0

0
K

4
50

K

50
0

K

55
0

K

60
0

K

65
0

K

70
0

K

75
0

K

80
0

K

85
0

K

90
0

K

95
0

K

1M 2M 3M 4
M 5M 6M 7M 8M 9M 10
M

12
M

14
M

16
M

18
M

20
M

22
M

24
M

26
M

28
M

30
M

32
M

34
M

36
M

38
M

4
0

M

4
2M

4
4

M

4
6M

4
8M 50

M

0.150

0.200

0.100

A
verag

e D
u

ration
 p

er 10
0

9 R
esou

rces (sec)

Maximum

Median

Minimum

https://cloud.google.com/healthcare/docs/reference/rest/v1/projects.locations.datasets.fhirStores.fhir/delete

FHIR.Search: Initial Release(link to documentation)

Page 14

For each measurement point, we executed the Search test harness script that performed the following actions on

the FHIR store:

Figure 5: Search API — Average response time to Search a FHIR resource from LP-1 to LP-4

LP-1 LP-2 LP-3 LP-4

10
K

20
K

30
K

4
0

K

50
K

60
K

70
K

80
K

90
K

10
0

K

15
0

K

20
0

K

25
0

K

30
0

K

35
0

K

4
0

0
K

4
50

K

50
0

K

55
0

K

60
0

K

65
0

K

70
0

K

75
0

K

80
0

K

85
0

K

90
0

K

95
0

K

1M 2M 3M 4
M 5M 6M 7M 8M 9M 10
M

12
M

14
M

16
M

18
M

20
M

22
M

24
M

26
M

28
M

30
M

32
M

34
M

36
M

38
M

4
0

M

4
2M

4
4

M

4
6M

4
8M 50

M

4

6

2

D
u

ration
 Taken

 P
er Q

u
ery (sec)

1. Executed queries using

the Concepts and

Attributes fields created

by the Synthea synthetic

data generator tool.

2. Searched FHIR resources in the

data store using search modifiers

such as: missing, :exact, :contains,

:text, :in, :not in , :above, :below,

:[type], :not, and :recurse.

Example Query Parameters:

Patient is female

from Alabama

Patient

is male

8

10

0

Maximum

Median

Minimum

FHIR.Search: against latest release of Google FHIR API
API Name Scope Before: Initial Version

Run (seconds)
After: Latest Version
Run (seconds)

Speed Improvement

Search (Rerun) Average search duration in seconds 4.066 1.066 381%

Total search duration in seconds. Search was rerun against the latest version of the Google FHIR API on the full 50 million patient
record dataset. This table shows the pre- and post- figures for comparison.

Noting performance issues beginning in LP-3 in our initial test, we re-ran the test with a later release of the Google

FHIR API at a volume of 50 million patients. This second test demonstrated a 381% improvement in response

time, as shown in the table below the graph. We believe that a similar level of improvement would project

backward through the entire test.

https://cloud.google.com/healthcare/docs/reference/rest/v1/projects.locations.datasets.fhirStores.fhir/search

FHIR.ExecuteBundle (link to documentation)

Page 15

For each measurement point, we executed a test script that created FHIR resources using three distinct patient

bundle sizes (based on number of FHIR resources per bundle) on the FHIR store. They were:

Figure 6: Execute Bundle API — Average response time to Execute a FHIR resource from LP-1 to LP-4

LP-1 LP-2 LP-3 LP-4

10
K

20
K

30
K

4
0

K

50
K

60
K

70
K

80
K

90
K

10
0

K

15
0

K

20
0

K

25
0

K

30
0

K

35
0

K

4
0

0
K

4
50

K

50
0

K

55
0

K

60
0

K

65
0

K

70
0

K

75
0

K

80
0

K

85
0

K

90
0

K

95
0

K

1M 2M 3M 4
M 5M 6M 7M 8M 9M 10
M

12
M

14
M

16
M

18
M

20
M

22
M

24
M

26
M

28
M

30
M

32
M

34
M

36
M

38
M

4
0

M

4
2M

4
4

M

4
6M

4
8M 50

M

0.0100

0.0150

0.0050

A
verag

e D
u

ration
 p

er R
esou

rce (sec)

Each data point is an average of the 1,000 ExecuteBundle response times.

0.0200

We then completed the transaction interaction on the FHIR Store.

Small Bundle — 312 Medium Bundle — 546 Large Bundle — 1789

0.0000

Maximum

Median

Minimum

https://cloud.google.com/healthcare/docs/reference/rest/v1/projects.locations.datasets.fhirStores.fhir/executeBundle

FHIR.ConditionalUpdate (link to documentation)

Page 16

Figure 7: ConditionalUpdate API — Average response time to Update a FHIR resource from LP-1 to LP-4

LP-1 LP-2 LP-3 LP-4

10
K

20
K

30
K

4
0

K

50
K

60
K

70
K

80
K

90
K

10
0

K

15
0

K

20
0

K

25
0

K

30
0

K

35
0

K

4
0

0
K

4
50

K

50
0

K

55
0

K

60
0

K

65
0

K

70
0

K

75
0

K

80
0

K

85
0

K

90
0

K

95
0

K

1M 2M 3M 4
M 5M 6M 7M 8M 9M 10
M

12
M

14
M

16
M

18
M

20
M

22
M

24
M

26
M

28
M

30
M

32
M

34
M

36
M

38
M

4
0

M

4
2M

4
4

M

4
6M

4
8M 50

M
0.200

A
verag

e D
u

ration
 p

er 10
0

9 R
esou

rces (sec)

For each measurement point, we executed the test harness script that performed the following action on the FHIR store:

1. We conditionally updated

1,000 FHIR resources at

each measurement point.

Each data point is an average of the 1,000 ConditionalUpdate response times.

Note: The results displayed here were from the initial test of the ConditionalUpdate API. We saw a

performance degradation at the same data volume as we saw with the Search API. Given that

conditional operations are effectively a search followed by an operation, it is reasonable to conclude

that ConditionalUpdate performance would improve significantly when using the latest release of the

Cloud Healthcare API with improved Search performance.

2. We recorded actual and

average time to Update

the FHIR resource.

There are two conditions:

A. Patient gender has been updated

B. Practitioner gender has been updated

0.300

0.400

0.500

0.600

0.700

0.800

0.900

0.100

Maximum

Median

Minimum

https://cloud.google.com/healthcare/docs/reference/rest/v1beta1/projects.locations.datasets.fhirStores.fhir/conditionalUpdate

FHIR.ConditionalPatch (link to documentation)

Page 17

Figure 8: Conditional Patch API — Average response time to Patch a FHIR resource from LP-1 to LP-4

LP-1 LP-2 LP-3 LP-4

10
K

20
K

30
K

4
0

K

50
K

60
K

70
K

80
K

90
K

10
0

K

15
0

K

20
0

K

25
0

K

30
0

K

35
0

K

4
0

0
K

4
50

K

50
0

K

55
0

K

60
0

K

65
0

K

70
0

K

75
0

K

80
0

K

85
0

K

90
0

K

95
0

K

1M 2M 3M 4
M 5M 6M 7M 8M 9M 10
M

12
M

14
M

16
M

18
M

20
M

22
M

24
M

26
M

28
M

30
M

32
M

34
M

36
M

38
M

4
0

M

4
2M

4
4

M

4
6M

4
8M 50

M

0.150

A
verag

e D
u

ration
 p

er 10
0

9 R
esou

rces (sec)

For each measurement point, we executed the test harness script that performed the following action on the FHIR store:

1. Conditionally patched 1,000 FHIR resources at each

measurement point by doing random modifications.

Each data point is an average of the 1,000 ConditionalPatch response times.

2. Recorded actual and average time to

Patch the FHIR resource.

0.200

0.250

0.300

0.350

0.400

0.450

0.100

Maximum

Median

Minimum

https://cloud.google.com/healthcare/docs/reference/rest/v1beta1/projects.locations.datasets.fhirStores.fhir/conditionalPatch

FHIR.ConditionalDelete (link to documentation)

Page 18

Figure 9: Conditional Delete API — Average response time to Delete a FHIR resource from LP-1 to LP-4

LP-1 LP-2 LP-3 LP-4

10
K

20
K

30
K

4
0

K

50
K

60
K

70
K

80
K

90
K

10
0

K

15
0

K

20
0

K

25
0

K

30
0

K

35
0

K

4
0

0
K

4
50

K

50
0

K

55
0

K

60
0

K

65
0

K

70
0

K

75
0

K

80
0

K

85
0

K

90
0

K

95
0

K

1M 2M 3M 4
M 5M 6M 7M 8M 9M 10
M

12
M

14
M

16
M

18
M

20
M

22
M

24
M

26
M

28
M

30
M

32
M

34
M

36
M

38
M

4
0

M

4
2M

4
4

M

4
6M

4
8M 50

M

0.400

A
verag

e D
u

ration
 p

er 10
0

9 R
esou

rces (sec)

For each measurement point, we executed the test harness script that performed the following action on the FHIR store:

1. Conditionally Deleted 1,000 FHIR resources at each

measurement point by doing random deletions.

2. Recorded actual and average time to

Delete the FHIR resource.

0.600

0.800

1.000

0.200

0

Maximum

Median

Minimum

Each data point is an average of the 1,000 Delete response times.

Note: The results displayed here were from the initial test of the ConditionalDelete API. We saw a

performance degradation at the same data volume as we saw with the Search API. Given that

conditional operations are effectively a search followed by an operation, it is reasonable to conclude

that ConditionalDelete performance would improve significantly when using the latest release of the

Cloud Healthcare API with improved Search performance.

https://cloud.google.com/healthcare/docs/reference/rest/v1beta1/projects.locations.datasets.fhirStores.fhir/conditionalDelete

FHIR.Import (link to documentation)

Page 19

LP-1 LP-2 LP-3 LP-4

10
K

20
K

30
K

4
0

K

50
K

60
K

70
K

80
K

90
K

10
0

K

15
0

K

20
0

K

25
0

K

30
0

K

35
0

K

4
0

0
K

4
50

K

50
0

K

55
0

K

60
0

K

65
0

K

70
0

K

75
0

K

80
0

K

85
0

K

90
0

K

95
0

K

1M 2M 3M 4
M 5M 6M 7M 8M 9M 10
M

12
M

14
M

16
M

18
M

20
M

22
M

24
M

26
M

28
M

30
M

32
M

34
M

36
M

38
M

4
0

M

4
2M

4
4

M

4
6M

4
8M 50

M

4K

 A
verag

e Im
p

ort R
esou

rces p
er Secon

d

Figure 10: Import API — Average FHIR resources Imported per second LP-1 to LP-4

2K

6K

For each measurement point, we executed the test harness script that performed following action on FHIR store:

1. Imported patient records at each

measurement point.

Each data point is indicated in terms of resources per second.

Note: Performance of the FHIR.Import API was limited by quota caps until the 26 million patient load.

Prior to the 26 million patient load point, Import was capped at 0.5 GB/minute. At 26 million patients,

quota was increased to 1.5 GB/minute. This explains the significant increase of resources per second

that occurred at that point.

2. Recorded actual and average time to

Import the patient record

8K

10K

0K

https://cloud.google.com/healthcare/docs/reference/rest/v1beta1/projects.locations.datasets.fhirStores/import

Conclusion

Upon analysis of our results, we found that the Cloud Healthcare API and GCP FHIR API scale

and maintain performance up to 50 million patient records (or ~26 billion FHIR resources and

comprising 85 TB of data) in the FHIR store.

We were able to import ~1 million patients per

day (and 10,000 FHIR resources per second)

into the FHIR store, reaching the 50 millionth

patient record in 50.23 days. We accomplished

this using the default (unoptimized) GCP

configuration and sequential loading. We are

confident that with optimization and

parallelization, the import speed would be

increased by at least 2-3x.

Importantly, the Cloud Healthcare API and GCP

FHIR API scale in a generally linear way, and

remain performant in high-volume use cases.

This is evidenced by the fact that performance

remains consistent as the data volume scales to

50 million synthetic patients. For example, the

FHIR.Create API demonstrated a response time

of < 200 milliseconds per FHIR resource at a

volume of 50 million patients, while the

FHIR.Read API exhibited a response time of <

140 milliseconds per FHIR resource at the same

load volume.

In addition to the fast import speed and

performance-at-scale of the Cloud Healthcare

API and the GCP FHIR store, we would also like

to point out that the Cloud Healthcare API

provides a fully managed development

environment; configuring the GCP test

environment only took a few minutes. We were

also able to spin up and tear down resources in a

matter of seconds.

Even though HIPAA compliance was not a factor

due to our using synthetic patient data, security

and compliance is built into GCP, and all data in

Google Cloud is encrypted in transit and at rest.

Leveraging this fully managed environment

helped to save time and resources, allowing our

team to focus on the experiment rather than

acquiring hardware and hosting and maintaining

the environment.

We conclude that the Cloud Healthcare API is

scalable, fast, and quick to configure, enabling

researchers, developers, data scientists to rapidly

build intelligent healthcare solutions in the cloud.

Page 20

● Birth to Death Lifecycle

● Configuration-based statistics

and demographics (defaults with

nationwide US Census data)

Page 21

Appendix A — Synthea
Overview

Synthea™ is an open-source Synthetic Patient Population Simulation developed by The MITRE

Corporation that is used to generate the synthetic patients. It generates realistic-looking

(but not real) patient data modeled on US Census data.

(Image Credit: Jason Walonoski, “Synthea: Massive FHIR Data”
presentation at HL7 FHIR DevDays 2018)Synthea

Currently, Synthea features:

● Drop-in Generic Modules

● Primary Care Encounters,

Emergency Room Encounters,

and Symptom-Driven Encounters

● Formats - HL7 FHIR and HL7 C-CDA

● Conditions, Allergies, Medications,

Vaccinations, Observations/Vitals,

Labs, Procedures, CarePlans

Clinical
Care Maps

Disease
Incidence &
Prevalence

Statistics

FHIR STU3

CCDAExport Patient
Health Records

(SNOMED, LOINC,
RxNorm)

Synthetic
Population

Census
Demographics

Configuration

Clinical Disease
Modules (state

machines)

https://synthetichealth.github.io/synthea/#about-landing

Page 23

We used the following operations to generate synthetic patient datasets with Synthea.

Note that Synthea requires Java 1.8 or above.

Generating Synthetic Patient Datasets

Steps:

1. Clone the Synthea repo, then build and run the test suite:

git clone https://github.com/synthetichealth/synthea.git

cd synthea

./gradlew build check test

2. Generate population for each state:

./run_synthea

run_synthea [-s seed] [-p populationSize] [-m moduleFilter] [state [city]]

For e.g the command to generate 500,000 patient records having gender as “Male” from “Dallas” City of “Texas” State:-

./run_synthea

run_synthea -s 2345627 -p 500000 -g M Texas “Dallas”

We generated 50 million patient records for this experiment in FHIR STU3 format. In order to

generate a patient population resembling the demographic and health diversity of the US

population, we generated the 50 million patient records using 16% of the Census population of

each state. We did this to ensure that the number of FHIR resources contained within the 50

million patient records would resemble the US population and its associated amount of data.

See “Data Usage Statistics on GCP” section below for more information.

Synthetic Patient Data Sets

● State or Jurisdiction — The US state or jurisdiction simulated

● Estimated Population — The number of patient records generated per simulation which has been

gradually increased per state

● Generated Records — Total number of patient records generated per state

Page 22

State or Jurisdiction Est. Pop 2019 Generated Records

California 39,512,223 6,321,956

Texas 28,995,881 4,639,341

Florida 21,477,737 3,436,438

New York 19,453,561 3,112,570

Pennsylvania 12,801,989 2,048,318

Illinois 12,671,821 2,027,491

Ohio 11,689,100 1,870,256

Georgia 10,617,423 1,698,788

North Carolina 10,488,084 1,678,093

Michigan 9,986,857 1,597,897

New Jersey 8,882,190 1,421,150

Virginia 8,535,519 1,365,683

Washington 7,614,893 1,218,383

Arizona 7,278,717 1,164,595

Massachusetts 6,892,503 1,102,800

Tennessee 6,829,174 1,092,668

Indiana 6,732,219 1,077,155

Missouri 6,137,428 981,988

Maryland 6,045,680 967,309

Wisconsin 5,822,434 931,589

Colorado 5,758,736 921,398

Minnesota 5,639,632 902,341

South Carolina 5,148,714 823,794

Alabama 4,903,185 784,510

Louisiana 4,648,794 743,807

Kentucky 4,467,673 714,828

Oregon 4,217,737 674,838

Oklahoma 3,956,971 633,115

Connecticut 3,565,287 570,446

Utah 3,205,958 512,953

Iowa 3,155,070 504,811

Nevada 3,080,156 492,825

Arkansas 3,017,804 482,849

Mississippi 2,976,149 476,184

Kansas 2,913,314 466,130

New Mexico 2,096,829 335,493

Nebraska 1,934,408 309,505

West Virginia 1,792,147 286,744

Idaho 1,787,065 285,930

Hawaii 1,415,872 226,540

New Hampshire 1,359,711 217,554

Maine 1,344,212 215,074

Montana 1,068,778 171,004

Rhode Island 1,059,361 169,498

Delaware 973,764 155,802

South Dakota 884,659 141,545

North Dakota 762,062 121,930

Alaska 731,545 117,047

Vermont 623,989 99,838

Wyoming 578,759 92,601

Total 327,533,774 52,405,404

Page 24

Appendix B — Test Harness

The test harness executes tests by using a python test library and then generates reports.

The test harness contains all the information needed to compile and run a test, including FHIR

store details, Bundle size, Queries etc.

We created the test harness and ran the experiments for the below APIs:

request = service.projects().locations().datasets().FHIRStores().FHIR().create(parent=parent,

type=type_, body=http_body_body)

response = request.execute()

Create FHIR

request = service.projects().locations().datasets().FHIRStores().FHIR().delete(name=name)

response = request.execute()

Delete FHIR

request = service.projects().locations().datasets().FHIRStores().FHIR().read(name=name)

response = request.execute()

Read FHIR

request = service.projects().locations().datasets().FHIRStores().FHIR().search(parent=parent,

body=search_resources_request_body)

response = request.execute()

Search FHIR

request = service.projects().locations().datasets().FHIRStores().FHIR().executeBundle(parent=parent,

body=http_body_body)

response = request.execute()

Execute Bundle

Page 25

Appendix C —
Experimental Considerations

Results were generated with verbose mode – OFF. With verbose mode – ON, the names of

users are printed in the terminal while generating.

We used Google Cloud Platform (GCP) in its default setting (without any optimization) to generate the data.

Our GCP configuration was as follows:

● CPU - 16 Core

● RAM - 60 GB

● Hard Disk - 1 TB SSD

Since the Synthea source code runs on JVM, memory allocation is done automatically. It is recommended to have

multiple cores to generate the data.

CPU Intensive Understanding

● It is also recommended that we use multiple CPU-intensive machines to share the load while generating the

synthetic patient data.

● To distribute the data geographically it is recommended to have multiple non-CPU intensive machines to test

the GCP FHIR API.

“Pretty-Print” vs “non-pretty” JSON bundles

● “Non-pretty” JSON bundles are faster to import, but Synthea only generates “Pretty-Print” JSON bundles.

We observed that the time-savings benefit of importing “non-pretty” JSON bundles would be outweighed by

the extra time it took to convert “Pretty-Print” JSON bundles to “non-pretty” JSON bundles for import.

Tip: remember to check your FHIR store to ensure that all FHIR resources are created in each patient record.

